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How	gravity	affect	time	dilation

Time	dilation	is	a	concept	that	pops	up	in	lots	of	sci-fi,	including	Orson	Scott	Card’s	Ender’s	Game,	where	one	character	ages	only	eight	years	in	space	while	50	years	pass	on	Earth.	This	is	precisely	the	scenario	outlined	in	the	famous	thought	experiment	the	Twin	Paradox:	an	astronaut	with	an	identical	twin	at	mission	control	makes	a	journey	into
space	on	a	high-speed	rocket	and	returns	home	to	find	that	the	twin	has	aged	faster.	Time	dilation	goes	back	to	Einstein’s	theory	of	special	relativity,	which	teaches	us	that	motion	through	space	actually	creates	alterations	in	the	flow	of	time.	The	faster	you	move	through	the	three	dimensions	that	define	physical	space,	the	more	slowly	you’re	moving
through	the	fourth	dimension,	time––at	least	relative	to	another	object.	Time	is	measured	differently	for	the	twin	who	moved	through	space	and	the	twin	who	stayed	on	Earth.	The	clock	in	motion	will	tick	more	slowly	than	the	clocks	we’re	watching	on	Earth.	If	you’re	able	to	travel	near	the	speed	of	light,	the	effects	are	much	more	pronounced.		Unlike
the	Twin	Paradox,	time	dilation	isn’t	a	thought	experiment	or	a	hypothetical	concept––it’s	real.	The	1971	Hafele-Keating	experiments	proved	as	much,	when	two	atomic	clocks	were	flown	on	planes	traveling	in	opposite	directions.	The	relative	motion	actually	had	a	measurable	impact	and	created	a	time	difference	between	the	two	clocks.	This	has	also
been	confirmed	in	other	physics	experiments	(e.g.,	fast-moving	muon	particles	take	longer	to	decay).		So	in	your	question,	an	astronaut	returning	from	a	space	journey	at	“relativistic	speeds”	(where	the	effects	of	relativity	start	to	manifest—generally	at	least	one-tenth	the	speed	of	light)	would,	upon	return,	be	younger	than	same-age	friends	and
family	who	stayed	on	Earth.	Exactly	how	much	younger	depends	on	exactly	how	fast	the	spacecraft	had	been	moving	and	accelerating,	so	it’s	not	something	we	can	readily	answer.	But	if	you’re	trying	to	reach	an	exoplanet	10	to	50	light-years	away	and	still	make	it	home	before	you	yourself	die	of	old	age,	you’d	have	to	be	moving	at	close	to	light
speed.		There’s	another	wrinkle	here	worth	mentioning:	time	dilation	as	a	result	of	gravitational	effects.	You	might	have	seen	Christopher	Nolan’s	movie	Interstellar,	where	the	close	proximity	of	a	black	hole	causes	time	on	another	planet	to	slow	down	tremendously	(one	hour	on	that	planet	is	seven	Earth	years).	This	form	of	time	dilation	is	also	real,
and	it’s	because	in	Einstein’s	theory	of	general	relativity,	gravity	can	bend	spacetime,	and	therefore	time	itself.	The	closer	the	clock	is	to	the	source	of	gravitation,	the	slower	time	passes;	the	farther	away	the	clock	is	from	gravity,	the	faster	time	will	pass.	(We	can	save	the	details	of	that	explanation	for	a	future	Airlock.)	We	all	travel	in	time!	We	travel
one	year	in	time	between	birthdays,	for	example.	And	we	are	all	traveling	in	time	at	approximately	the	same	speed:	1	second	per	second.	We	typically	experience	time	at	one	second	per	second.	Credit:	NASA/JPL-Caltech	NASA's	space	telescopes	also	give	us	a	way	to	look	back	in	time.	Telescopes	help	us	see	stars	and	galaxies	that	are	very	far	away.	It
takes	a	long	time	for	the	light	from	faraway	galaxies	to	reach	us.	So,	when	we	look	into	the	sky	with	a	telescope,	we	are	seeing	what	those	stars	and	galaxies	looked	like	a	very	long	time	ago.	However,	when	we	think	of	the	phrase	"time	travel,"	we	are	usually	thinking	of	traveling	faster	than	1	second	per	second.	That	kind	of	time	travel	sounds	like
something	you'd	only	see	in	movies	or	science	fiction	books.	Could	it	be	real?	Science	says	yes!	This	image	from	the	Hubble	Space	Telescope	shows	galaxies	that	are	very	far	away	as	they	existed	a	very	long	time	ago.	Credit:	NASA,	ESA	and	R.	Thompson	(Univ.	Arizona)	How	do	we	know	that	time	travel	is	possible?	More	than	100	years	ago,	a	famous
scientist	named	Albert	Einstein	came	up	with	an	idea	about	how	time	works.	He	called	it	relativity.	This	theory	says	that	time	and	space	are	linked	together.	Einstein	also	said	our	universe	has	a	speed	limit:	nothing	can	travel	faster	than	the	speed	of	light	(186,000	miles	per	second).	Einstein's	theory	of	relativity	says	that	space	and	time	are	linked
together.	Credit:	NASA/JPL-Caltech	What	does	this	mean	for	time	travel?	Well,	according	to	this	theory,	the	faster	you	travel,	the	slower	you	experience	time.	Scientists	have	done	some	experiments	to	show	that	this	is	true.	For	example,	there	was	an	experiment	that	used	two	clocks	set	to	the	exact	same	time.	One	clock	stayed	on	Earth,	while	the
other	flew	in	an	airplane	(going	in	the	same	direction	Earth	rotates).	After	the	airplane	flew	around	the	world,	scientists	compared	the	two	clocks.	The	clock	on	the	fast-moving	airplane	was	slightly	behind	the	clock	on	the	ground.	So,	the	clock	on	the	airplane	was	traveling	slightly	slower	in	time	than	1	second	per	second.	Credit:	NASA/JPL-Caltech
Can	we	use	time	travel	in	everyday	life?	We	can't	use	a	time	machine	to	travel	hundreds	of	years	into	the	past	or	future.	That	kind	of	time	travel	only	happens	in	books	and	movies.	But	the	math	of	time	travel	does	affect	the	things	we	use	every	day.	For	example,	we	use	GPS	satellites	to	help	us	figure	out	how	to	get	to	new	places.	(Check	out	our	video
about	how	GPS	satellites	work.)	NASA	scientists	also	use	a	high-accuracy	version	of	GPS	to	keep	track	of	where	satellites	are	in	space.	But	did	you	know	that	GPS	relies	on	time-travel	calculations	to	help	you	get	around	town?	GPS	satellites	orbit	around	Earth	very	quickly	at	about	8,700	miles	(14,000	kilometers)	per	hour.	This	slows	down	GPS
satellite	clocks	by	a	small	fraction	of	a	second	(similar	to	the	airplane	example	above).	GPS	satellites	orbit	around	Earth	at	about	8,700	miles	(14,000	kilometers)	per	hour.	Credit:	GPS.gov	However,	the	satellites	are	also	orbiting	Earth	about	12,550	miles	(20,200	km)	above	the	surface.	This	actually	speeds	up	GPS	satellite	clocks	by	a	slighter	larger
fraction	of	a	second.	Here's	how:	Einstein's	theory	also	says	that	gravity	curves	space	and	time,	causing	the	passage	of	time	to	slow	down.	High	up	where	the	satellites	orbit,	Earth's	gravity	is	much	weaker.	This	causes	the	clocks	on	GPS	satellites	to	run	faster	than	clocks	on	the	ground.	The	combined	result	is	that	the	clocks	on	GPS	satellites
experience	time	at	a	rate	slightly	faster	than	1	second	per	second.	Luckily,	scientists	can	use	math	to	correct	these	differences	in	time.	Credit:	NASA/JPL-Caltech	If	scientists	didn't	correct	the	GPS	clocks,	there	would	be	big	problems.	GPS	satellites	wouldn't	be	able	to	correctly	calculate	their	position	or	yours.	The	errors	would	add	up	to	a	few	miles
each	day,	which	is	a	big	deal.	GPS	maps	might	think	your	home	is	nowhere	near	where	it	actually	is!	In	Summary:	Yes,	time	travel	is	indeed	a	real	thing.	But	it's	not	quite	what	you've	probably	seen	in	the	movies.	Under	certain	conditions,	it	is	possible	to	experience	time	passing	at	a	different	rate	than	1	second	per	second.	And	there	are	important
reasons	why	we	need	to	understand	this	real-world	form	of	time	travel.	This	supplement	to	the	main	Time	article	explains	some	of	the	key	concepts	of	the	Special	Theory	of	Relativity	(STR).	It	shows	how	the	predictions	of	STR	differ	from	classical	mechanics	in	the	most	fundamental	way.	Some	basic	mathematical	knowledge	is	assumed.	Table	of
Contents	1.	Proper	Time	The	essence	of	the	Special	Theory	of	Relativity	(STR)	is	that	it	connects	three	distinct	quantities	to	each	other:	space,	time,	and	proper	time.	‘Time’	is	also	called	coordinate	time	or	real	time,	to	distinguish	it	from	‘proper	time’.	Proper	time	is	also	called	clock	time,	or	process	time,	and	it	is	a	measure	of	the	amount	of	physical
process	that	a	system	undergoes.	For	example,	proper	time	for	an	ordinary	mechanical	clock	is	recorded	by	the	number	of	rotations	of	the	hands	of	the	clock.	Alternatively,	we	might	take	a	gyroscope,	or	a	freely	spinning	wheel,	and	measure	the	number	of	rotations	in	a	given	period.	We	could	also	take	a	chemical	process	with	a	natural	rate,	such	as
the	burning	of	a	candle,	and	measure	the	proportion	of	candle	that	is	burnt	over	a	given	period.	Note	that	these	processes	are	measured	by	‘absolute	quantities’:	the	number	of	times	a	wheel	spins	on	its	axis,	or	the	proportion	of	candle	that	has	burnt.	These	give	absolute	physical	quantities	and	do	not	depend	upon	assigning	any	coordinate	system,	as
does	a	numerical	representation	of	space	or	real	time.	The	numerical	coordinate	systems	we	use	firstly	require	a	choice	of	measuring	units	(meters	and	seconds,	for	example).	Even	more	importantly,	the	measurement	of	space	and	real	time	in	STR	is	relative	to	the	choice	of	an	inertial	frame.	This	choice	is	partly	arbitrary.	Our	numerical
representation	of	proper	time	also	requires	a	choice	of	units,	and	we	adopt	the	same	units	as	we	use	for	real	time	(seconds).	But	the	choice	of	a	coordinate	system,	based	on	an	inertial	frame,	does	not	affect	the	measurement	of	proper	time.	We	will	consider	the	concept	of	coordinate	systems	and	measuring	units	shortly.	Proper	time	can	be	defined	in
classical	mechanics	through	cyclic	processes	that	have	natural	periods	–	for	instance,	pendulum	clocks	are	based	on	counting	the	number	of	swings	of	a	pendulum.	More	generally,	any	natural	process	in	a	classical	system	runs	through	a	sequence	of	physical	states	at	a	certain	absolute	rate,	and	this	is	the	‘proper	time	rate’	for	the	system.	In	classical
physics,	two	identical	types	of	systems	(with	identical	types	of	internal	construction,	and	identical	initial	states)	are	predicted	to	have	the	same	proper	time	rates.	That	is,	they	will	run	through	their	physical	states	in	perfect	correlation	with	each	other.	This	holds	even	if	two	identical	systems	are	in	relative	constant	motion	with	respect	to	each	other.
For	instance,	two	identical	classical	clocks	would	run	at	the	same	rate,	even	if	one	is	kept	stationary	in	a	laboratory,	while	the	other	is	placed	in	a	spaceship	traveling	at	high	speed.	This	invariance	principle	is	fundamental	to	classical	physics,	and	it	means	that	in	classical	physics	we	can	define:	Coordinate	time	=	Proper	time	for	all	natural	systems.
For	this	reason,	the	distinction	between	these	two	concepts	of	time	was	hardly	recognized	in	classical	physics	(although	Newton	did	distinguish	them	conceptually,	regarding	‘real	time’	as	an	absolute	temporal	flow,	and	‘proper	time’	as	merely	a	‘sensible	measure’	of	real	time;	see	his	Scholium).	However,	the	distinction	only	gained	real	significance	in
the	Special	Theory	of	Relativity,	which	contradicts	classical	physics	by	predicting	that	the	rate	of	proper	time	for	a	system	varies	with	its	velocity,	or	motion	through	space.	The	relationship	is	very	simple:	the	faster	a	system	travels	through	space,	the	slower	its	internal	processes	go.	At	the	maximum	possible	speed,	the	speed	of	light,	c,	the	internal
processes	in	a	physical	system	would	stop	completely.	Indeed,	for	light	itself,	the	rate	of	proper	time	is	zero:	there	is	no	‘internal	process’	occurring	in	light.	It	is	as	if	light	is	‘frozen’	in	a	specific	internal	state.	At	this	point,	we	should	mention	that	the	concept	of	proper	time	appears	more	strongly	in	quantum	mechanics	than	in	classical	mechanics,
through	the	intrinsically	‘wave-like’	nature	of	quantum	particles.	In	classical	physics,	single	point-particles	are	simple	things,	and	do	not	have	any	‘internal	state’	that	represents	proper	time,	but	in	quantum	mechanics,	the	most	fundamental	particles	have	an	intrinsic	proper	time,	represented	by	an	internal	frequency.	This	is	directly	related	to	the
wave-like	nature	of	quantum	particles.	For	radioactive	systems,	the	rate	of	radioactive	decay	is	a	measure	of	proper	time.	Note	that	the	amount	of	decay	of	a	substance	can	be	measured	in	an	absolute	sense.	For	light,	treated	as	a	quantum	mechanical	particle	(the	photon),	the	rate	of	proper	time	is	zero,	and	this	is	because	it	has	no	mass.	But	for
quantum	mechanical	particles	with	mass,	there	is	always	a	finite	‘intrinsic’	proper	time	rate,	represented	by	the	‘phase’	of	the	quantum	wave.	Classical	particles	do	not	have	any	correlate	of	this	feature,	which	is	responsible	for	quantum	interference	effects	and	other	non-classical	‘wave-like’	behavior.	2.	The	STR	Relationship	Between	Space,	Time,
and	Proper	Time	STR	predicts	that	motion	of	a	system	through	space	is	directly	compensated	by	a	decrease	in	real	internal	processes,	or	proper	time	rates.	Thus,	a	clock	will	run	fastest	when	it	is	stationary.	If	we	move	it	about	in	space,	its	rate	of	internal	processes	will	decrease,	and	it	will	run	slower	than	an	identical	type	of	stationary	clock.	The
relationship	is	precisely	specified	by	the	most	profound	equation	of	STR,	usually	called	the	metric	equation	(or	line	metric	equation).	The	metric	equation	is:	(1)	This	applies	to	the	trajectory	of	any	physical	system.	The	quantities	involved	are:	D	is	the	difference	operator.	Dt	is	the	amount	of	proper	time	elapsed	between	two	points	on	the	trajectory.	Dt
is	the	amount	of	real	time	elapsed	between	two	points	on	the	trajectory.	Dr	is	the	amount	of	motion	through	space	between	two	points	on	the	trajectory.	c	is	the	speed	of	light,	and	depends	on	the	units	we	choose	for	space	and	time.	The	meaning	of	this	equation	is	illustrated	by	considering	simple	trajectories	depicted	in	a	space-time	diagram.	Figure
1.	Two	simple	space-time	trajectories.	If	we	start	at	a	initial	point	on	the	trajectory	of	a	physical	system,	and	follow	it	to	a	later	point,	we	find	that	the	system	has	covered	a	certain	amount	of	physical	space,	Dr,	over	a	certain	amount	of	real	time,	Dt,	and	has	undergone	a	certain	amount	of	internal	process	or	proper-time,	Dt.	As	long	as	we	use	the	same
units	(seconds)	to	represent	proper	time	and	real	time,	these	quantities	are	connected	as	described	in	Equation	(1).	Proper	time	intervals	are	shown	in	Figure	1	by	blue	dots	along	the	trajectories.	If	these	were	trajectories	of	clocks,	for	example,	then	the	blue	dots	would	represent	seconds	ticked	off	by	the	clock	mechanism.	In	Figure	1,	we	have	chosen
to	set	the	speed	of	light	as	1.	This	is	equivalent	to	using	our	normal	units	for	time,	i.e.	seconds,	but	choosing	the	units	for	space	as	c	meters	(instead	of	1	meter),	where	c	is	the	speed	of	light	in	meters	per	second.	This	system	of	units	is	often	used	by	physicists	for	convenience,	and	it	appears	to	make	the	quantity	c	drop	out	of	the	equations,	since	c	=
1.	However,	it	is	important	to	note	that	c	is	a	dimensional	constant,	and	even	if	its	numerical	value	is	set	equal	to	1	by	choosing	appropriate	units,	it	is	still	logically	necessary	in	Equation	1	for	the	equation	to	balance	dimensionally.	For	multiplying	an	interval	of	time,	Dt,	by	the	quantity	c	converts	from	a	temporal	quantity	into	a	spatial	quantity.
Equations	of	physics,	just	like	ordinary	propositions,	can	only	identify	objects	or	quantities	of	the	same	physical	kinds	with	each	other,	and	the	role	of	c	as	a	dimensional	constant	remains	crucial	in	Equation	(1),	for	the	identity	it	states	to	make	any	sense.	Trajectories	in	Figure	1	Trajectory	1	(green)	is	for	a	stationary	particle,	hence	Dr	=	0	(it	has	no
motion	through	space),	and	putting	this	value	in	Equation	(1),	we	find	that:	Dt	=	Dt.	For	a	stationary	particle,	the	amount	of	proper	time	is	equal	to	the	amount	of	coordinate	time.	Trajectory	2	(red)	is	for	a	moving	particle,	and	Dr	>	0.	We	have	chosen	the	velocity	in	this	example	to	be:	v	=	c/2,	half	the	speed	of	light.	But:	v	=	Dr/Dt	(distance	traveled	in
the	interval	of	time).	Hence:	Dr	=	½cDt.	Putting	this	value	into	Equation	(1),	we	get:	c²Dt²	=	c²Dt²-(½cDt)²,	or:	Dt	=	Ö(¾)Dt	»	0.87Dt.	Hence	the	amount	of	proper	time	is	only	about	87%	of	coordinate	time.	Even	though	this	trajectory	is	very	fast,	proper	time	is	still	only	slowed	down	a	little.	Trajectory	3	(black)	is	for	a	particle	moving	at	the	speed	of
light,	with	v	=	c,	giving:	Dr	=	cDt.	Putting	this	in	Equation	(1),	we	get:	c²Dt²	=	c²Dt²-(cDt)²	=	0.	Hence	for	a	light-like	particle,	the	amount	of	proper	time	is	equal	to	0.	Now	from	the	classical	point	of	view,	Equation	(1)	is	a	surprise	–	indeed,	it	seems	bizarre!	For	how	can	mere	motion	through	space	directly	and	precisely	affect	the	rate	of	physical
processes	occurring	in	a	system?	We	are	used	to	the	opposite	idea,	that	motion	through	space,	by	itself,	has	no	intrinsic	effect	on	processes.	This	is	at	the	heart	of	the	classical	Galilean	invariance	or	symmetry.	But	STR	breaks	this	rule.	We	can	compare	this	situation	with	classical	physics,	where	(for	linear	trajectories)	we	have	two	independent
equations:	(2.a)	Dt	=	Dt	(2.b)	Dr	=	vDt	for	some	(real	numbers)	Equation	(2.a)	just	means	that	the	rate	of	proper	time	in	a	system	is	invariant	–	and	we	measure	it	in	the	same	units	as	coordinate	time,	t.	Equation	(2.b)	just	means	that	every	particle	or	system	has	some	finite	velocity	or	speed,	v,	through	space,	with	v	defined	by:	v	=	Dr/Dt.	There	is	no
connection	here	between	proper	time	and	spatial	motion	of	the	system.	The	fact	that	(2)	is	replaced	by	(1)	in	STR	is	very	peculiar	indeed.	It	means	that	the	rate	of	internal	process	in	a	system	like	a	clock	(whether	it	is	a	mechanical,	chemical,	or	radioactive	clock)	is	automatically	connected	to	the	motion	of	the	clock	in	space.	If	we	speed	up	a	clock	in
motion	through	space,	the	rate	of	internal	process	slows	down	in	a	precise	way	to	compensate	for	the	motion	through	space.	The	great	mystery	is	that	there	is	no	apparent	mechanism	for	this	effect,	called	time	dilation.	In	classical	physics,	to	slow	down	a	clock,	we	have	to	apply	some	force	like	friction	to	its	internal	mechanism.	In	STR,	the	physical
process	of	a	system	is	slowed	down	just	by	moving	it	around.	This	applies	equally	to	all	physical	processes.	For	instance,	a	radioactive	isotope	decays	more	slowly	at	high	speed.	And	even	animals,	including	human	beings,	should	age	more	slowly	if	they	move	around	at	high	speed,	giving	rise	to	the	Twin	Paradox.	In	fact,	time	dilation	was	already
recognized	by	Lorentz	and	Poincare,	who	developed	most	of	the	essential	mathematical	relationships	of	STR	before	Einstein.	But	Einstein	formulated	a	more	comprehensive	theory,	and,	with	important	contributions	by	Minkowski,	he	provided	an	explanation	for	the	effects.	The	Einstein-Minkowski	explanation	appeals	to	the	new	concept	of	a	space-
time	manifold,	and	interprets	Equation	(1)	as	a	kind	of	‘geometric’	feature	of	space-time.	This	view	has	been	widely	embraced	in	20th	Century	physics.	By	contrast,	Lorentz	refused	to	believe	in	the	‘geometric’	explanation,	and	he	thought	that	motion	through	space	has	some	kind	of	‘mechanical’	effect	on	particles,	which	causes	processes	to	slow
down.	While	Lorentz’s	view	is	dismissed	by	most	physicists,	some	writers	have	persisted	with	similar	ideas,	and	the	issues	involved	in	the	explanation	of	Equation	(1)	continue	to	be	of	deep	interest,	to	philosophers	at	least.	But	before	moving	on	to	the	explanation,	we	need	to	discuss	the	concepts	of	coordinate	systems	for	space	and	time,	which	we
have	been	assuming	so	far	without	explanation.	3.	Coordinate	Systems	In	physics	we	generally	assume	that	space	is	a	three	dimensional	manifold	and	time	is	a	one	dimensional	continuum.	A	coordinate	system	is	a	way	of	representing	space	and	time	using	numbers	to	represent	points.	We	assign	a	set	of	three	numbers,	(x,y,z),	to	characterize	points	in
space,	and	one	number,	t,	to	characterize	a	point	in	time.	Combining	these,	we	have	general	space-time	coordinates:	(x,y,z,t).	The	idea	is	that	every	physical	event	in	the	universe	has	a	‘space-time	location’,	and	a	coordinate	system	provides	a	numerical	description	of	the	system	of	these	possible	‘locations’.	Classical	coordinate	systems	were	used	by
Descartes,	Galileo,	Newton,	Leibniz,	and	other	classical	physicists	to	describe	space.	Classical	space	is	assumed	to	be	a	three	dimensional	Euclidean	manifold.	Classical	physicists	added	time	coordinates,	t,	as	an	additional	parameter	to	characterize	events.	The	principles	behind	coordinate	systems	seemed	very	intuitive	and	natural	up	until	the
beginning	of	the	20th	century,	but	things	changed	dramatically	with	the	STR.	One	of	Einstein’s	first	great	achievements	was	to	reexamine	the	concept	of	a	coordinate	system,	and	to	propose	a	new	system	suited	to	STR,	which	differs	from	the	system	for	classical	physics.	In	doing	this,	Einstein	recognized	that	the	notion	of	a	coordinate	system	is	theory
dependent.	The	classical	system	depends	on	adopting	certain	physical	assumptions	of	classical	physics	–	for	instance,	that	clocks	do	not	alter	their	rates	when	they	are	moved	about	in	space.	In	STR,	some	of	the	laws	underpinning	these	classical	assumptions	change,	and	this	changes	our	very	assumptions	about	how	we	can	measure	space	and	time.
To	formulate	STR	successfully,	Einstein	could	not	simply	propose	a	new	set	of	physical	laws	within	the	existing	classical	framework	of	ideas	about	space	and	time:	he	had	to	simultaneously	reformulate	the	representation	of	space	and	time.	He	did	this	primarily	by	reformulating	the	rules	for	assigning	coordinate	systems	for	space	and	time.	He	gave	a
new	system	of	rules	suited	to	the	new	physical	principles	of	STR,	and	reexamined	the	validity	of	the	old	rules	of	classical	physics	within	this	new	system.	A	key	feature	Einstein	focused	on	is	that	a	coordinate	system	involves	a	system	of	operational	principles,	which	connect	the	features	of	space	and	time	with	physical	processes	or	‘operations’	that	we
can	use	to	measure	those	features.	For	instance,	the	theory	of	classical	space	assumes	that	there	is	an	intrinsic	distance	(or	length)	between	points	of	space.	We	may	take	distance	itself	to	be	an	underlying	feature	of	‘empty	space’.	Geometric	lines	can	be	defined	as	collections	of	points	in	space,	and	line	segments	have	intrinsic	lengths,	prior	to	any
physical	objects	being	placed	in	space.	But	of	course,	we	only	measure	(or	perceive)	the	underlying	structure	of	space	by	using	physical	objects	or	physical	processes	to	make	measurements.	Typically,	we	use	‘straight	rigid	rulers’	to	measure	distances	between	points	of	space;	or	we	use	‘uniform,	standard	clocks’	to	measure	the	time	intervals
between	moments	of	time.	Rulers	and	clocks	are	particular	physical	objects	or	processes,	and	for	them	to	perform	their	measurement	functions	adequately,	they	must	have	appropriate	physical	properties.	But	those	physical	properties	are	the	subject	of	the	theories	of	physics	themselves.	Classical	physics,	for	example,	assumes	that	ordinary	rigid
rulers	maintain	the	same	length	(or	distance	between	the	end-points)	when	they	are	moved	around	in	space.	It	also	assumes	that	there	are	certain	types	of	systems	(providing	‘idealized	clocks’)	that	produce	cyclic	physical	processes,	and	maintain	the	same	temporal	intervals	between	cycles	through	time,	even	if	we	move	these	systems	around	in
space.	These	assumptions	are	internally	consistent	with	principles	of	measurement	in	classical	physics.	But	they	are	contradicted	in	STR,	and	Einstein	had	to	reformulate	the	operational	principles	for	measuring	space	and	time,	in	a	way	that	is	internally	consistent	with	the	new	physical	principles	of	STR.	We	will	briefly	describe	these	new	operational
principles	shortly,	but	there	are	some	features	of	coordinate	systems	that	are	important	to	appreciate	first.	a.	Coordinates	as	a	Mathematical	Language	for	Time	and	Space	The	assignment	of	a	numerical	coordinate	system	for	time	or	space	is	thought	of	as	providing	a	mathematical	language	(using	numbers	as	names)	for	representing	physical	things
(time	and	space).	In	a	sense,	this	language	could	be	‘arbitrarily	chosen’:	there	are	no	laws	about	what	names	can	be	used	to	represent	things.	But	naturally	there	are	features	that	we	want	a	coordinate	system	to	reflect.	In	particular,	we	want	the	assignment	of	numbers	to	directly	reflect	the	concepts	of	distance	between	points	of	space,	and	the	size
of	intervals	between	moments	of	time.	We	perform	mathematical	operations	on	numbers,	and	we	can	subtract	two	numbers	to	find	the	‘numerical	distance’	between	them.	For	numbers	are	really	defined	as	certain	structures,	with	features	such	as	continuity,	and	we	want	to	use	the	structures	of	number	systems	to	represent	structural	features	of
space	and	time.	For	instance,	we	assume	in	our	fundamental	physical	theory	that	any	two	intervals	of	time	have	intrinsic	magnitudes,	which	can	be	compared	to	each	other.	The	‘intrinsic	temporal	distance’	between	two	moments,	t1	and	t2,	may	be	the	same	as	that	between	two	quite	different	moments,	t3	and	t4.	We	naturally	want	to	assign	numbers
to	times	so	that	ordinary	numerical	subtraction	corresponds	to	the	‘intrinsic	temporal	distance’	between	events.	We	choose	a	‘uniform’	coordinate	system	for	time	to	achieve	this.	Figure	2.	A	Coordinate	system	for	time	gives	a	mathematical	language	for	a	physical	thing.	Numbers	are	used	as	names	for	moments	of	time.	4.	Cartesian	Coordinates	for
Space	Time	is	simple	because	it	is	one-dimensional.	Three-dimensional	space	is	much	more	complex.	Because	space	is	three	dimensional,	we	need	three	separate	real	numbers	to	represent	a	single	point.	Physicists	normally	choose	a	Cartesian	coordinate	system	to	represent	space.	We	represent	points	in	this	system	as:	r	=	(x,y,z),	where	x,	y,	and	z
are	separate	numerical	coordinates,	in	three	orthogonal	(perpendicular)	directions.	The	numerical	structure	with	real-number	points	is	denoted	in	mathematics	as	(x,y,z).	Three	dimensional	space	itself	(a	physical	thing)	is	denoted	as:	.	A	Cartesian	coordinate	system	is	a	special	kind	of	mapping	between	points	of	these	two	structures.	It	makes	the
intrinsic	spatial	distance	between	two	points	in	E3	be	directly	reflected	by	the	‘numerical	distance’	between	their	numerical	coordinates	in	.	The	numerical	distances	in	are	determined	by	a	numerical	function	for	length.	A	line	from	the	origin:	(0,0,0),	to	the	point	r	=	(x,y,z),	which	is	called	the	vector	r,	has	its	length	given	by	the	Pythagorean	formula:
|r|	=	√(x²+y²+z²).	More	generally,	for	any	two	points,	r1	=	(x1,	y1,	z1),	and:	r2	=	(x2,	y2,	z2),	the	distance	function	is:	|r2	–	r1|	=	√((x2	–	x1)²+	(y2	–	y1)²+	(z2	–	z1)²)	The	special	feature	of	this	system	is	that	the	lengths	of	lines	in	the	x,	y,	or	z	directions	alone	are	given	directly	by	the	values	of	the	coordinates.	E.g.	if:	r	=	(x,0,0),	then	the	vector	to	r	is	a
line	purely	in	the	x-direction,	and	its	length	is	simply:	|r|	=	x.	If	r1	=	(x1,0,0),	and:	r2	=	(x2,0,0),	then	the	distance	between	them	is	just:	|r2	–	r1|	=	(x2	–	x1	).	As	well,	a	Cartesian	coordinate	system	treats	the	three	directions,	x,	y,	and	z,	in	a	symmetric	way:	the	angles	between	any	pair	of	these	directions	is	the	same,	900.	For	this	reason,	a	Cartesian
system	can	be	rotated,	and	the	same	form	of	the	general	distance	function	is	maintained	in	the	rotated	system.	In	fact,	there	are	spatial	manifolds	which	do	not	have	any	possible	Cartesian	coordinate	system	–	e.g.	the	surface	of	a	sphere,	regarded	as	a	two	dimensional	manifold,	cannot	be	represented	by	using	Cartesian	coordinates.	Such	spaces	were
first	studied	as	geometric	systems	in	the	19th	century,	and	are	called	non-classical	or	non-Euclidean	geometries.	However,	classical	space	is	Euclidean,	and	by	definition:	Euclidean	space	can	be	represented	by	Cartesian	coordinate	systems.	We	can	define	alternative,	non-Cartesian,	coordinate	systems	for	Euclidean	space;	for	instance,	cylindrical	and
spherical	coordinate	systems	are	very	useful	in	physics,	and	they	use	mixtures	of	linear	or	radial	distance,	and	angles,	as	the	numbers	to	specify	points	of	space.	The	numerical	formulas	for	distance	in	these	coordinate	systems	appear	quite	different	from	the	Cartesian	formula.	But	they	are	defined	to	give	the	same	results	for	the	distances	between
physical	points.	This	is	the	most	crucial	feature	of	the	concept	of	distance	in	classical	physics:	Distance	between	points	in	classical	space	(or	between	two	events	that	occur	at	the	same	moment	of	time)	is	a	physical	invariant.	It	does	not	change	with	the	choice	of	coordinate	system.	The	form	of	the	numerical	equation	for	distance	changes	with	the
choice	of	coordinate	system;	but	this	is	done	deliberately	to	preserve	the	physical	concept	of	distance.	5.	Choice	of	Inertial	Reference	Frame	A	second	crucial	concept	is	the	idea	of	a	reference	frame.	A	reference	frame	specifies	all	the	trajectories	that	are	regarded	as	stationary,	or	at	rest	in	space.	This	defines	the	property	of	remaining	at	the	same
place	through	time.	But	the	key	feature	of	both	classical	mechanics	and	STR	is	that	no	unique	reference	frame	is	determined.	Any	object	that	is	not	accelerating	can	be	regarded	as	stationary	‘in	its	own	inertial	frame’.	It	defines	a	valid	reference	frame	for	the	whole	universe.	This	is	the	natural	reference	frame	‘from	the	point	of	view’	of	the	object,	or
‘relative	to	the	object’.	But	there	are	many	possible	choices	because	given	any	particular	reference	frame,	any	other	frame,	defined	to	give	everything	a	constant	velocity	relative	to	the	first	frame	is	also	a	valid	choice.	The	class	of	possible	(physically	valid)	reference	frames	is	objectively	determined,	because	acceleration	is	absolutely	distinguished
from	constant	motion.	Any	object	that	is	not	accelerating	may	be	regarded	as	defining	a	valid	reference	frame.	But	the	specific	choice	of	a	reference	frame	from	the	range	of	possibilities	is	regarded	as	arbitrary	or	conventional.	This	choice	must	be	made	before	a	coordinate	system	can	be	defined	to	represent	distances	in	space	and	time.	Even	after	we
have	chosen	a	reference	frame,	there	are	still	innumerable	choices	of	coordinate	systems.	But	the	reference	frame	settles	the	definition	of	distances	between	events,	which	must	be	defined	as	the	same	in	any	coordinate	system	relative	to	a	given	reference	frame.	The	idea	of	the	conventionality	of	the	reference	frame	is	partly	evident	already	in	the
choice	of	a	Cartesian	coordinate	system:	for	it	is	an	arbitrary	matter	where	we	choose	the	origin,	or	point:	0	=	(0,0,0),	for	such	a	system.	It	is	also	arbitrary	which	directions	we	choose	for	the	x,	y,	and	z	axes	–	as	long	as	we	make	them	mutually	perpendicular.	We	are	free	to	rotate	a	given	set	of	axes,	x,	y,	z,	to	produce	a	new	set,	x’,	y’,	and	z’,	and	this
gives	another	Cartesian	coordinate	system.	Thus,	translations	and	rotations	of	Cartesian	coordinate	systems	for	space	still	leave	us	with	Cartesian	systems.	But	there	is	a	further	transformation,	which	is	absolutely	central	to	classical	physics,	and	involves	both	time	and	space.	This	is	the	Galilean	velocity	transformation,	or	velocity	boost.	The	essential
point	is	that	we	need	to	apply	a	spatial	coordinate	system	through	time.	In	pure	classical	geometry,	we	do	not	have	to	take	time	into	account:	we	just	assign	a	single	coordinate	system,	at	a	single	moment	of	time.	But	in	physics	we	need	to	apply	a	coordinate	system	for	space	at	different	moments	of	time.	How	do	we	know	whether	the	coordinate
system	we	apply	at	one	moment	of	time	represents	the	same	coordinate	system	we	use	at	a	later	moment	of	time?	The	principles	of	classical	physics	mean	that	we	cannot	measure	‘absolute	location	in	space’	across	time.	The	reason	is	the	fundamental	classical	principle	that	the	laws	of	nature	do	not	distinguish	between	two	inertial	frames	moving
relative	to	each	other	at	a	constant	speed.	This	is	the	classical	Galilean	principle	of	‘relativity	of	motion’.	Roughly	stated,	this	means	that	uniform	motion	through	space	has	no	effect	on	physical	processes.	And	if	motion	in	itself	does	not	affect	processes,	then	we	cannot	use	processes	to	detect	motion.	Newton	believed	that	the	classical	conception	of
space	requires	there	to	be	absolute	spatial	locations	through	time	nonetheless,	and	that	some	special	coordinate	systems	or	physical	objects	will	indeed	be	at	‘absolute	rest’	in	space.	But	in	the	context	of	classical	physics,	it	is	impossible	to	measure	whether	any	object	is	at	absolute	rest,	or	is	in	uniform	motion	in	space.	Because	of	this,	Leibniz	denied
that	classical	physics	requires	any	concept	of	absolute	position	in	space,	and	argued	that	only	the	notion	of	‘relative’	or	‘relational’	space’	is	required.	In	this	view,	only	the	relative	positions	of	objects	with	regards	to	each	other	are	considered	real.	For	Newton,	the	impossibility	of	measuring	absolute	space	does	not	prevent	it	from	being	a	viable
concept,	and	even	a	logically	necessary	concept.	There	is	still	no	general	agreement	about	this	debate	between	‘absolute’	and	‘relative’	or	‘relational’	conceptions	of	space.	It	is	one	of	the	great	historical	debates	in	the	philosophy	of	both	classical	and	relativistic	physics.	However,	it	is	generally	accepted	that	classical	physics	makes	absolute	space
undetectable.	This	means,	at	least,	that	in	the	context	of	classical	physics	there	is	no	way	of	giving	an	operational	procedure	for	determining	absolute	position	(or	absolute	rest)	through	time.	However	absolute	acceleration	is	detectable.	Accelerations	are	always	accompanied	by	forces.	This	means	that	we	can	certainly	specify	the	class	of	coordinate
systems	which	are	in	uniform	motion,	or	which	do	not	accelerate.	These	special	systems	are	called	inertial	systems,	or	inertial	frames,	or	Galilean	frames.	The	existence	of	inertial	frames	is	a	fundamental	assumption	of	classical	physics.	It	is	also	fundamental	in	STR,	and	the	notion	of	an	inertial	frame	is	very	similar	in	both	theories.	The	laws	of
classical	physics	are	therefore	specified	for	inertial	coordinate	systems.	They	are	equally	valid	in	any	inertial	frame.	The	same	holds	for	the	laws	of	STR.	However,	the	laws	for	transforming	from	one	inertial	frame	to	another	are	different	for	the	two	theories.	To	see	how	this	works,	we	now	consider	the	operational	specification	of	coordinate	systems.
6.	Operational	Specification	of	Coordinate	Systems	for	Classical	Space	and	Time	In	classical	physics,	we	can	define	an	‘operational’	measuring	system,	which	allows	us	to	assign	coordinates	to	events	in	space	and	time.	Classical	Time.	We	imagine	measuring	time	by	making	a	number	of	uniform	clocks,	synchronizing	them	at	some	initial	moment,
checking	that	they	all	run	at	exactly	the	same	rates	(proper	time	rates),	and	then	moving	clocks	to	different	points	of	space,	where	we	keep	them	‘stationary’	in	a	chosen	inertial	frame.	We	subsequently	measure	the	times	of	events	that	occur	at	the	various	places,	as	recorded	by	the	different	clocks	at	those	places.	Of	course,	we	cannot	assume	that
our	system	of	clocks	is	truly	stationary.	The	entire	system	of	clocks	placed	in	uniform	motion	would	also	define	a	valid	inertial	frame.	But	the	laws	of	classical	physics	mean	that	clocks	in	uniform	inertial	motion	run	at	exactly	the	same	rates,	and	so	the	times	recoded	for	specific	events	turn	out	to	be	exactly	the	same,	on	the	assumptions	of	the	classical
theory,	for	any	such	system	of	clocks.	Classical	Space.	We	imagine	measuring	space	by	constructing	a	set	of	rigid	measuring	rods	or	rulers	of	the	same	length,	which	we	can	(imaginatively	at	least)	set	up	as	a	grid	across	space,	in	an	inertial	frame.	We	keep	all	the	rulers	stationary	relative	to	each	other,	and	we	use	them	to	measure	the	distances
between	various	events.	Again,	the	main	complication	is	that	we	cannot	determine	any	absolutely	stationary	frame	for	the	grid	of	rulers,	and	we	can	set	up	an	alternative	system	of	rulers	which	is	in	relative	motion.	This	results	in	assigning	different	‘absolute	velocities’	to	objects,	as	measured	in	two	different	frames.	However,	on	the	assumptions	of
the	classical	theory,	the	relative	distances	between	any	two	objects	or	events,	taken	at	any	given	moment	of	time,	is	measured	to	be	the	same	in	any	inertial	frame.	This	is	because,	in	classical	physics,	uniform	motion	in	itself	does	not	alter	the	lengths	of	material	objects,	or	the	forces	between	systems	of	objects.	(Accelerations	do	alter	lengths).	7.
Operational	Specification	of	Coordinate	Systems	for	STR	Space	and	Time	In	STR,	the	situation	is	in	many	ways	very	similar	to	classical	physics:	there	is	still	a	special	concept	of	inertial	frames,	acceleration	is	absolutely	detectable,	and	uniform	velocity	is	undetectable.	According	to	STR,	the	laws	of	physics	still	are	invariant	with	regard	to	uniform
motion	in	space,	very	much	like	the	classical	laws.	We	also	specify	operational	definitions	of	inertial	coordinate	systems	in	STR	in	a	similar	way	to	classical	physics.	However,	the	system	sketched	above	for	assigning	classical	coordinates	fails,	because	it	is	inconsistent	with	the	physical	principles	of	STR.	Einstein	was	forced	to	reconstruct	the	classical
system	of	measurement	to	obtain	a	system	which	is	internally	consistent	with	STR.	STR	Time.	In	STR,	we	can	still	make	uniform	clocks,	which	run	at	the	same	rates	when	they	are	held	stationary	relative	to	each	other.	But	now	there	is	a	problem	synchronizing	them	at	different	points	of	space.	We	can	start	them	off	synchronized	at	a	particular
common	point;	but	moving	them	to	different	points	of	space	already	upsets	their	synchronization,	according	to	Equation	(1).	However,	while	synchronizing	distant	clocks	is	a	problem,	they	nonetheless	run	at	the	same	intrinsic	rates	as	each	other	when	held	in	the	same	inertial	frame.	And	we	can	ensure	two	clocks	are	in	a	common	inertial	frame	as
long	as	we	can	ensure	that	they	maintain	the	same	distance	from	each	other.	We	see	how	to	do	this	next.	Given	we	have	two	clocks	maintained	at	the	same	distance	from	each	other,	Einstein	showed	that	there	is	indeed	a	simple	operational	procedure	to	establish	synchronization.	We	send	a	light	signal	from	Clock	1	to	Clock	2,	and	reflect	it	back	to
Clock	1.	We	record	the	time	it	was	sent	on	Clock	1	as	t0,	and	the	time	it	was	received	again	as	a	later	time,	t2.	We	also	record	the	time	it	was	received	at	Clock	2	as	t1’	on	Clock	2.	Now	symmetry	of	the	situation	requires	that,	in	the	inertial	frame	of	Clock	1,	we	must	assume	that	the	light	signal	reached	Clock	2	at	a	moment	halfway	between	t0	and	t1,
i.e.	at	the	time:	t1	=	½(t2	–	t0).	This	is	because,	by	symmetry,	the	light	signal	must	take	equal	time	traveling	in	either	direction	between	the	clocks,	given	that	they	are	kept	at	a	constant	distance	throughout	the	process,	and	they	do	not	accelerate.	(If	the	light	signal	took	longer	to	travel	one	way	than	the	other,	then	light	would	have	to	move	at
different	speeds	in	different	directions,	which	contradicts	STR).	Hence,	we	must	resynchronize	Clock	2	to	make:	t1’	=	t1.	We	simply	set	the	hands	on	Clock	2	forwards	by:	(t1	–	t1’),	i.e.	by:	½(t2	–	t0)	–	t1’.	(Hence,	the	coordinate	time	on	Clock	2	at	t1’	is	changed	to:	t1’	+	(½(t2	–	t0)	–	t1’)	=	½(t2	–	t0)	=	t1.)	This	is	sometimes	called	the	‘clock
synchronization	convention’,	and	some	philosophers	have	argued	about	whether	it	is	justified.	But	there	is	no	real	dispute	that	this	successfully	defines	the	only	system	for	assigning	simultaneity	in	time,	in	the	chosen	reference	frame,	which	is	consistent	with	STR.	Some	deeper	issues	arise	over	the	notion	of	simultaneity	that	it	seems	to	involve.	From
the	point	of	view	of	Clock	1,	the	moment	recorded	at:	t1	=	½(t2	–	t0)	must	be	judged	as	‘simultaneous’	with	the	moment	recorded	at	t1’	on	Clock	2.	But	in	a	different	inertial	frame,	the	natural	coordinate	system	will	alter	the	apparent	simultaneity	of	these	two	events,	so	that	simultaneity	itself	is	not	‘objective’	in	STR,	except	relative	to	a	choice	of
inertial	frame.	We	will	consider	this	later.	STR	Space.	In	STR,	we	can	measure	space	in	a	very	similar	way	as	in	classical	physics.	We	imagine	constructing	a	set	of	rigid	measuring	rods	or	rulers,	which	are	checked	to	be	the	same	length	in	the	inertial	frame	of	Clock	1,	and	we	extend	this	out	into	a	grid	across	space.	We	have	to	move	the	rulers	around
to	start	with,	but	when	we	have	set	up	the	grid,	we	keep	them	all	stationary	in	the	chosen	inertial	frame	of	Clock	1.	We	then	use	this	grid	of	stationary	measuring	rods	to	measure	the	distances	between	various	events.	The	main	assumption	is	that	identical	types	of	measuring	rods	(which	are	the	same	lengths	when	we	originally	compare	them	at	rest
with	Clock	1),	maintain	the	same	lengths	after	being	moved	to	different	places	(and	being	made	stationary	again	with	regard	to	Clock	1).	This	feature	is	required	by	STR.	The	main	complication,	once	again,	is	that	we	cannot	determine	any	absolutely	stationary	frame	for	the	grid	of	rulers.	We	can	set	up	an	alternative	system	of	rulers,	which	are	all	in
relative	motion	in	a	different	inertial	frame.	As	in	classical	physics,	this	results	in	assigning	different	‘absolute	velocities’	to	most	trajectories	in	the	two	different	frames.	But	in	this	case	there	is	a	deeper	difference:	on	the	assumptions	of	STR,	the	lengths	of	measuring	rods	alter	according	to	their	velocities.	This	is	called	space	dilation,	and	it	is	the
counterpart	of	time	dilation.	Nonetheless,	Einstein	showed	that	perfectly	sensible	operational	definitions	of	coordinate	measurements	for	length,	as	well	as	time,	are	available	in	STR.	But	both	simultaneity	and	length	become	relative	to	specified	inertial	frames.	It	is	this	confusing	conceptual	problem,	which	involves	the	theory	dependence	of
measurement,	that	Einstein	first	managed	to	unravel,	as	the	prelude	to	showing	how	to	radically	reconstruct	classical	physics.	8.	Operationalism	Unraveling	this	problem	requires	us	to	specify	‘operational	principles’	of	measurement,	but	this	does	not	require	us	to	embrace	an	operational	theory	of	meaning.	The	latter	is	a	form	of	positivism,	and	it
holds	that	the	meaning	of	‘time’	or	‘space’	in	physics	is	determined	entirely	by	specifying	the	procedures	for	measuring	time	or	space.	This	theory	is	generally	rejected	by	philosophers	and	logicians,	and	it	was	rejected	by	Einstein	himself	in	his	mature	work.	According	to	operationalism,	STR	changes	the	meanings	of	the	concepts	of	space	and	time
from	the	classical	conception.	However,	many	philosophers	would	argue	that	‘time’	and	‘space’	have	a	meaning	for	us	which	is	essentially	the	same	as	for	Galileo	and	Newton,	because	we	identify	the	same	kinds	of	things	as	time	and	space;	but	relativity	theory	has	altered	our	scientific	beliefs	about	these	things	–	just	as	the	discovery	that	water	is
H2O	has	altered	our	understanding	of	the	nature	of	water,	without	necessarily	altering	the	meaning	of	the	term	‘water’.	This	semantic	dispute	is	ongoing	in	the	philosophy	of	science.	Having	clarified	these	basic	ideas	of	coordinate	systems	and	inertial	frames,	we	now	turn	back	to	the	notion	of	transformations	between	coordinate	systems	for	different
inertial	frames.	9.	Coordinate	Transformations	and	Object	Transformations	Physics	uses	two	different	concepts	of	transformations.	It	is	important	to	distinguish	these	carefully.	Coordinate	transformations:	Taking	the	description	of	a	given	process	(such	as	a	trajectory),	described	in	one	coordinate	system,	and	transforming	to	its	description	in	an
alternative	coordinate	system.	Object	transformations:	Taking	a	given	process,	described	in	a	given	coordinate	system,	and	transforming	it	into	a	different	process,	described	in	the	same	coordinate	system	as	the	original	process.	The	difference	is	illustrated	in	the	following	diagram	for	the	simplest	kind	of	transformation,	translation	of	space.	Figure
3.	Object,	Coordinate,	and	Combined	Transformations.	The	transformations	in	Figure	3	are	simple	space	translations.	Figure	3	(B)	shows	an	object	transformation.	The	original	trajectory	(A)	is	moved	in	space	to	the	right,	by	4	units.	The	new	coordinates	are	related	to	the	original	coordinates	by:	xnew	particle	®	xoriginal	particle	+	4.	Figure	3	(C)
shows	a	coordinate	transformation:	the	coordinate	system	is	moved	to	the	left	by	4	units.	The	new	coordinate	system,	x’,	is	related	to	the	original	system,	x,	by:	x’original	particle	=	xoriginal	particle	+	4.	The	result	‘looks’	the	same	as	(B).	Figure	3	(D)	shows	a	combination	of	the	object	transformation	(B)	and	a	coordinate	transformation,	which	is	the
inverse	of	that	in	(C),	defined	by:	x’’original	particle	=	xoriginal	particle	–	4.	The	result	of	this	looks	the	same	as	the	original	trajectory	in	(A),	because	the	coordinate	transformation	appears	to	‘undo’	the	effect	of	the	object	transformation.	10.	Valid	Transformations	There	is	an	intimate	connection	between	these	two	kinds	of	transformations.	This
connection	provides	the	major	conceptual	apparatus	of	modern	physics,	through	the	concept	of	physical	symmetries,	or	invariance	principles,	and	valid	transformations.	The	deepest	features	of	laws	or	theories	of	physics	are	reflected	in	their	symmetry	properties,	which	are	also	called	invariances	under	symmetry	transformations.	Laws	or	theories
can	be	understood	as	describing	classes	of	physical	processes.	Physical	processes	that	conform	to	a	theory	are	valid	physical	processes	of	that	theory.	Of	course,	not	all	(logically)	possible	processes	that	we	can	imagine	are	valid	physical	processes	of	a	given	theory.	Otherwise	the	theory	would	encompass	all	possible	processes,	and	tell	us	nothing
about	what	is	physically	possible,	as	opposed	to	what	is	logically	conceivable.	Symmetries	of	a	theory	are	described	by	transformations	that	preserve	valid	processes	of	the	theory.	For	instance,	time	translation	is	a	symmetry	of	almost	all	theories.	This	means	that	if	we	take	a	valid	process,	and	transform	it,	intact,	to	an	earlier	or	later	time,	we	still
have	a	valid	process.	This	is	equivalent	to	simply	setting	the	‘temporal	origin’	of	the	process	to	a	later	or	earlier	time.	Other	common	symmetries	are:	Rotations	in	space	(if	we	take	a	valid	process,	and	rotate	it	to	another	direction	in	space,	we	end	up	with	another	valid	process).	Translations	in	space	(if	we	take	a	valid	process,	and	move	it	to	another
position	in	space,	we	end	up	with	another	valid	process).	Velocity	transformations	(if	we	take	a	valid	process,	and	give	it	uniform	velocity	boost	in	some	direction	in	space,	we	end	up	with	another	valid	process).	These	symmetries	are	valid	both	in	classical	physics	and	in	STR.	In	classical	physics,	they	are	called	Galilean	symmetries	or	transformations.
In	STR	they	are	called	Lorentz	transformations.	However,	although	the	symmetries	are	very	similar	in	both	theories,	the	Lorentz	transformations	in	STR	involve	features	that	are	not	evident	in	the	classical	theory.	In	fact,	this	difference	only	emerges	for	velocity	boosts.	Translations	and	rotations	are	identical	in	both	theories.	This	is	essentially
because	velocity	boosts	in	STR	involve	transformations	of	the	connection	between	proper	time	and	ordinary	space	and	time,	which	does	not	appear	in	classical	theory.	The	concept	of	valid	coordinate	transformations	follows	directly	from	that	of	valid	object	transformations.	The	point	is	that	when	we	make	an	object	transformation,	we	begin	with	a
description	of	a	process	in	a	coordinate	system,	and	end	up	with	another	description,	of	a	different	process,	given	in	the	same	coordinate	system.	Now	instead	of	transforming	the	processes	involved,	we	can	do	the	inverse,	and	make	a	transformation	of	the	coordinate	system,	so	that	we	end	up	with	a	new	coordinate	description	of	the	original	process,
which	looks	exactly	the	same	as	the	description	of	the	transformed	process	in	the	original	coordinate	system.	This	gives	an	alternative	way	of	regarding	the	process,	and	its	transformed	image:	instead	of	taking	them	as	two	different	processes,	we	can	take	them	as	two	different	coordinate	descriptions	of	the	same	process.	This	is	connected	to	the	idea
that	certain	aspects	of	the	coordinate	system	are	arbitrary	or	conventional.	For	instance,	the	choice	of	a	particular	origin	for	time	or	space	is	regarded	as	conventional:	we	can	move	the	origins	in	our	coordinate	description,	and	we	still	have	a	valid	system.	This	is	only	possible	because	the	corresponding	object	transformations	(time	and	space
translations)	are	valid	physical	transformations.	Physicists	tend	to	regard	coordinate	transformations	and	valid	object	transformations	interchangeably	and	somewhat	ambiguously,	and	the	distinction	between	the	two	is	often	blurred	in	applied	physics.	While	this	doesn’t	cause	practical	problems,	it	is	important	when	learning	the	concepts	of	the
theory	to	distinguish	the	two	kinds	of	transformations	clearly.	11.	Velocity	Boosts	in	STR	and	Classical	Mechanics	STR	and	classical	mechanics	have	exactly	the	same	symmetries	under	translations	of	time	and	space,	and	rotations	of	space.	They	also	both	have	symmetries	under	velocity	boosts:	both	theories	hold	that,	if	we	take	a	valid	physical
process,	and	give	it	a	uniform	additional	velocity	in	some	direction,	we	end	with	another	valid	physical	process.	But	the	transformation	of	space	and	time	coordinates,	and	of	proper	time,	are	different	for	the	two	theories	under	a	velocity	boost.	In	classical	physics,	it	is	called	a	Galilean	transformation,	while	for	STR	it	is	called	a	Lorentz	transformation.
To	see	how	the	difference	appears,	we	can	take	a	stationary	trajectory,	and	consider	what	happens	when	we	apply	a	velocity	boost	in	either	theory.	Figure	4.	Classical	and	STR	Velocity	Boosts	give	different	results.	In	both	diagrams,	the	green	line	is	the	original	trajectory	of	a	stationary	particle,	and	it	looks	exactly	the	same	in	STR	and	classical
mechanics.	Proper	time	events	(marked	in	blue)	are	equally	spaced	with	the	coordinate	time	intervals	in	both	cases.	If	we	transform	the	classical	trajectory	by	giving	the	particle	a	velocity	(in	this	example,	v	=	c/2)	towards	the	right,	the	result	(red	line)	is	very	simple:	the	proper	time	events	remain	equally	spaced	with	coordinate	time	intervals.	The
same	sequence	of	proper	time	events	takes	the	same	amount	of	coordinate	time	to	complete.	The	classical	particle	moves	a	distance:	Dx	=	v.Dt	to	the	right,	where	Dt	is	the	coordinate	time	duration	of	the	original	process.	But	when	we	transform	the	STR	particle,	a	strange	thing	happens:	the	proper	time	events	become	more	widely	spaced	than	the
coordinate	time	intervals,	and	the	same	sequence	of	proper	time	events	takes	more	coordinate	time	to	complete.	The	STR	particle	moves	a	distance:	Dx’	=	v.Dt’	to	the	right,	where:	Dt’	>	Dt,	and	hence:	Dx’	>	Dx.	The	transformations	of	the	coordinates	of	the	(proper	time)	points	of	the	original	processes	are	shown	in	the	following	table.	Table	1.
Example	of	Velocity	Transformation.	We	can	work	out	the	general	formula	for	the	STR	transformations	of	t’	and	x’	in	this	example	by	using	Equation	(1).	This	requires	finding	a	formula	for	the	transformation	of	time-space	coordinates:	(t,	0)	®	(t’,	x’)	We	obtain	this	by	applying	Equation	(1)	in	the	(t’,x’)	coordinate	system,	giving:	(1’)	It	is	crucial	that
this	equation	retains	the	same	form	under	the	Lorentz	equation.	In	this	special	case,	we	have	the	additional	facts	that:	(i)	Dt	=	Dt,	and:(ii)	Dx’	=	vDt’	We	substitute	(i)	and	(ii)	in	(1’)	to	get:	This	rearranges	to	give:	and:	We	can	see	that:	Dx’/Dt’	=	v.	This	is	a	special	case	of	a	Lorentz	transformation	for	this	simplest	kind	of	trajectory.	Note	that	if	we	think
of	this	as	a	coordinate	transformation	which	generates	the	appearance	of	this	object	transformation,	we	need	to	move	the	new	coordinate	system	in	the	opposite	direction	to	the	motion	of	the	object.	I.e.	if	we	define	a	new	coordinate	system,	(x’,t’),	moving	at	–v	(i.e.	to	the	left)	with	regard	to	the	original	(x,t)	system,	then	the	original	trajectory	(which
appeared	stationary	in	(x,t))	will	appear	to	be	moving	with	velocity	+v	(to	the	left)	in	(x’,t’).	In	general,	object	transformations	correspond	the	inverse	coordinate	transformations.	12.	Lorentz	Transformations	for	Velocity	Boost	V	in	the	x-direction	The	previous	transformations	is	only	for	points	on	the	special	line	where:	x	=	0.	More	generally,	we	want
to	work	out	the	formulae	for	transforming	points	anywhere	in	the	coordinate	system:	(t,	x)	®	(t’,	x’)	The	classical	formulas	are	Galilean	transformations,	and	they	are	very	simple.	Galilean	Velocity	Boost:	(t,	x)	®	(t,	x+vt)t’	=	t	x’	=	x+vt	The	STR	formulas	are	more	general	Lorentz	transformations.	The	Galilean	transformation	is	simple	because	time
coordinates	are	unchanged,	so	that:	t	=	t’.	This	means	that	simultaneity	in	time	in	classical	physics	is	absolute:	it	does	not	depend	upon	the	choice	of	coordinate	system.	We	also	have	that	distance	between	two	points	at	a	given	moment	of	time	is	invariant,	because	if:	x2	-x1	=	Dx,	then:	x’2	-x’1	=	(x2+vt)	–	(x1-vt)	=	Dx.	Ordinary	distance	in	space	is	the
crucial	invariant	quantity	in	classical	physics.	But	in	STR,	we	have	a	complex	interdependence	of	time	and	space	coordinates.	This	is	seen	because	the	transformation	formulas	for	both	t’	and	x’	are	functions	of	both	x	and	t.	I.e.	there	are	functions	f	and	g	such	that:	t’	=	f(x,t)	and:	x’	=	g(x,t)	These	functions	represent	the	Lorentz	transformations.	To
give	stationary	objects	a	velocity	V	in	the	x-direction,	these	general	functions	are	found	to	be	Lorentz	Transformation,	and	the	factor	is	called	γ,	letting	us	write	these	equations	more	simply	as:	Lorentz	Transformations:	t’	=	γ(t+Vx/c2)	and:	x’	=	γ(x+Vt)	We	can	equally	consider	the	corresponding	coordinate	transformation,	which	would	generate	the
appearance	of	this	object	transformation	in	a	new	coordinate	system.	It	is	essentially	the	same	as	the	object	transformation	–	except	it	must	go	in	the	opposite	direction.	For	the	object	transformation,	which	increases	the	velocity	of	stationary	particles	by	the	speed	V	in	the	x	direction,	corresponds	to	moving	the	coordinate	system	in	the	opposite
direction.	I.e.	if	we	define	a	new	coordinate	system,	and	call	it	(x’,t’),	and	place	this	in	motion	with	a	speed	–V	(i.e.	V	in	the	negative-x-direction),	relative	to	the	(x,t)	coordinate	system,	then	the	original	stationary	trajectories	in	(x,t)-coordinates	will	appear	to	have	speed	V	in	the	new	(x’,t’)	coordinates.	Because	the	Lorentz	transformation	of	processes
leaves	us	with	valid	STR	processes,	the	Lorentz	transformation	of	a	STR	coordinate	system	leaves	us	with	a	valid	coordinate	system.	In	particular,	the	form	of	Equation	(1)	is	preserved	by	the	Lorentz	transformation,	so	that	we	get:	.	This	can	be	checked	by	substituting	the	formulas	for	t’	and	x’	back	into	this	equation,	and	simplifying;	the	resulting
equation	turns	out	to	be	identical	to	Equation	(1).	13.	Galilean	Transformation	of	Coordinate	System	One	useful	way	to	visualize	the	effect	of	a	transformation	is	to	make	an	ordinary	space-time	diagram,	with	the	space	and	time	axes	drawn	perpendicular	to	each	other	as	usual,	and	then	to	draw	the	new	set	of	coordinates	on	this	diagram.	In	these
diagrams,	the	space	axes	represent	points	which	are	measured	to	have	the	same	time	coordinates,	and	similarly,	the	time	axes	represent	points	which	are	measured	to	have	the	same	space	coordinates.	When	we	make	a	velocity	boost,	these	lines	of	simultaneity	and	same-position	are	altered.	This	is	shown	first	for	a	Galilean	velocity	boost,	where	in
fact	the	lines	of	simultaneity	remain	the	same,	but	the	lines	representing	position	are	rotated:	Figure	5.	Galilean	Velocity	Boost.	In	Figure	5,	the	(green)	horizontal	lines	are	lines	of	absolute	simultaneity.	They	have	the	same	coordinates	in	both	t	and	t’.	The	(blue)	vertical	lines	are	lines	with	the	same	x-coordinates.	The	(gray)	slanted	lines	are	lines	with
the	same	x’-coordinates.	The	spacing	of	the	x’	coordinates	is	the	same	as	the	x	coordinates,	which	means	that	relative	distances	between	points	are	not	affected.	The	solid	black	arrow	represents	a	stationary	trajectory	in	(x,t).	An	object	transformation	of	+V	moves	it	onto	the	green	arrow,	with	velocity:	v	=	c/2	in	the	(x,t)-system.	A	coordinate
transformation	of	+V,	to	a	system	(x’,t’)	moving	at	+V	with	regard	to	(x,t),	makes	this	green	arrow	appears	stationary	in	the	(x’,t’)	system.	This	coordinate	transformation	makes	the	black	arrow	appear	to	be	moving	at	–V	in	(x’,t’)	coordinates.	14.	Lorentz	Transformation	of	Coordinate	System	In	a	Lorentz	velocity	boost,	the	time	and	space	axes	are
both	rotated,	and	the	spacing	is	also	changed.	Figure	6.	Rotation	of	Space	and	Time	Coordinate	Axes	by	a	Lorentz	Velocity	Boost.	Some	proper	time	events	are	marked	in	blue.	To	obtain	the	(x’,t’)-coordinates	of	a	point	defined	in	(x,t)-coordinates,	we	start	at	that	point,	and:	(i)	move	parallel	to	the	green	lines,	to	find	the	intersection	with	the	(red)	t’-
axis,	which	is	marked	with	the	x’-coordinates;	and:	(ii)	move	parallel	to	the	red	lines,	to	find	the	intersection	with	the	(green)	x’-axis,	which	is	marked	with	the	t’-coordinates.	The	effects	of	this	transformation	on	a	solid	rod	or	ruler	extending	from	x=0	to	x=1,	and	stationary	in	(x,t),	is	shown	in	more	detail	below.	Figure	7.	Lorentz	Velocity	Boost.
Magnified	view	of	Figure	6	shows	time	and	space	dilation.	The	gray	rectangle	represents	a	unit	of	the	space-time	path	of	a	rod	(Rod	1)	stationary	in	(x,t).	The	dark	green	lines	represent	a	Lorentz	(object)	transformation	of	this	trajectory,	which	is	a	second	rod	(Rod	2)	moving	at	V	in	(x,t)	coordinates.	This	is	a	unit	of	the	space-time	path	of	a	stationary
rod	in	(x’,t’).	15.	Time	and	Space	Dilation	Figure	7	shows	how	both	time	and	space	dilation	effects	work.	To	see	this	clearly,	we	need	to	consider	the	volumes	of	space-time	that	an	object	like	a	rod	traces	out.	The	(gray)	rectangle	PQRS	represents	a	space-time	volume,	for	a	stationary	rod	or	ruler	in	the	original	frame.	It	is	1-meter	long	in	original
coordinates	(Dx	=	1),	and	is	shown	over	1	unit	of	proper	time,	which	corresponds	to	one	unit	of	coordinate	time	(Dt	=	1).	The	rectangle	PQ’R’S’	(green	edges)	represents	a	second	space-time	volume,	for	a	rod	which	appears	to	be	moving	in	the	original	frame.	This	is	how	the	space-time	volume	of	the	first	rod	transforms	under	a	Lorentz
transformation.	We	may	interpret	the	transformation	as	either:	(i)	a	Lorentz	velocity	boost	of	the	rod	by	velocity	+V	(object	transformation),	or	equally:	(ii)	a	Lorentz	transformation	to	a	new	coordinate	system,	(x’,t’),	moving	at	–V	with	regard	to	(x,t).	Note	that:	The	length	of	the	moving	rod	measured	in	x	is	now	shorter	than	the	stationary	rod:	Dx	=	1/
γ.	This	is	space	dilation.	The	coordinate	time	between	proper	time	events	on	the	moving	rod	measured	in	t	is	now	longer	than	for	the	stationary	rod	(Dt	=	γ).	This	is	time	dilation.	The	need	to	fix	the	new	coordinate	system	in	this	way	can	be	worked	out	by	considering	the	moving	rod	from	the	point	of	view	of	its	own	inertial	system.	As	viewed	in	its	own
inertial	coordinate	system,	the	green	rectangle	PQ’R’S’	appears	as	the	space-time	boundary	for	a	stationary	rod.	In	this	frame:	PS’	appears	stationary:	it	is	a	line	where:	x’	=	0.	PQ’	appears	as	a	line	of	simultaneity,	i.e.	it	is	a	line	where:	t’=0.	R’S’	is	also	a	line	of	simultaneity	in	t’.	Points	on	R’S’	must	have	the	time	coordinate:	t’=1,	since	it	is	at	the	time
t’	when	one	unit	of	proper	time	has	elapsed,	and	for	the	stationary	object,	Dt’	=	Dt.	The	length	of	PQ’	must	be	one	unit	in	x’,	since	the	moving	rod	appears	the	same	length	in	its	own	inertial	frame	as	the	original	stationary	rod	did.	Time	and	space	dilation	are	often	referred	to	as	‘perspective	effects’	in	discussions	of	STR.	Objects	and	processes	are	said
to	‘look’	shorter	or	longer	when	viewed	in	one	inertial	frame	rather	than	in	another.	It	is	common	to	regard	this	effect	as	a	purely	‘conventional’	feature,	which	merely	reflects	a	conventional	choice	of	reference	frame.	But	this	is	rather	misleading,	because	time	and	space	dilation	are	very	real	physical	effects,	and	they	lead	to	completely	different
types	of	physical	predictions	than	classical	physics.	However,	the	symmetrical	properties	of	the	Lorentz	transformation	makes	it	impossible	to	use	these	features	to	tell	whether	one	frame	is	‘really	moving’	and	another	is	‘really	stationary’.	For	instance,	if	objects	get	shorter	when	they	are	placed	in	motion,	then	why	do	we	not	simply	measure	how
long	objects	are,	and	use	this	to	determine	whether	they	are	‘really	stationary’?	The	details	in	Figure	7	reveal	why	this	does	not	work:	the	space	dilation	effect	is	reversed	when	we	change	reference	frames.	That	is:	Measured	in	Frame	1,	i.e.	in	(x,t)-coordinates,	the	stationary	object	(Rod	1)	appears	longer	than	the	moving	object	(Rod	2).	But:
Measured	in	Frame	2,	using	(x’,t’)-coordinates,	the	moving	object	(Rod	2)	appears	stationary,	while	the	originally	stationary	object	(Rod	1)	moves.	But	now	the	space	dilation	effect	appears	reversed,	and	Rod	2	appears	longer	than	Rod	1!	The	reason	this	is	not	a	real	paradox	or	inconsistency	can	be	seen	from	the	point	of	view	of	Frame	2,	because	now
Rod	1	at	the	moment	of	time	t’	=	0	stretches	from	the	point	P	to	Q’’,	rather	than	from	P	to	Q,	as	in	Frame	1.	The	line	of	simultaneity	alters	in	the	new	frame,	so	that	we	measure	the	distance	between	a	different	pair	of	space-time	events.	And	PQ’’	is	now	found	to	be	shorter	than	PQ’,	which	is	the	length	of	Rod	2	in	Frame	2.	There	is	no	answer,	within
STR,	as	to	which	rod	‘really	gets	shorter’.	Similarly	there	is	no	answer	as	to	which	rod	‘really	has	faster	proper	time’	–	when	we	switch	to	Frame	2,	we	find	that	Rod	2	has	a	faster	rate	of	proper	time	with	regard	to	coordinate	time,	reversing	the	time	dilation	effect	apparent	in	Frame	1.	In	this	sense,	we	could	consider	these	effects	a	matter	of
‘perspective’	–	although	it	is	more	accurate	to	say	that	in	STR,	in	its	usual	interpretation,	there	are	simply	no	facts	about	absolute	length,	or	absolute	time,	or	absolute	simultaneity,	at	all.	However,	this	does	not	mean	that	time	and	space	dilation	are	not	real	effects.	They	are	displayed	in	other	situations	where	there	is	no	ambiguity.	One	example	is	the
twins’	paradox,	where	proper	time	slows	down	in	an	absolute	way	for	a	moving	twin.	And	there	are	equally	real	physical	effects	resulting	from	space	dilation.	It	is	just	that	these	effects	cannot	be	used	to	determine	an	absolute	frame	of	rest.	16.	The	Full	Special	Theory	of	Relativity	So	far,	we	have	only	examined	the	most	basic	part	of	STR:	the	valid
STR	transformations	for	space,	time,	and	proper	time,	and	the	way	these	three	quantities	are	connected	together.	This	is	the	most	fundamental	part	of	the	theory.	It	represents	relativistic	kinematics.	It	already	has	very	powerful	implications.	But	the	fully	developed	theory	is	far	more	extensive:	it	results	from	Einstein’s	idea	that	the	Lorentz
transformations	represent	a	universal	invariance,	applicable	to	all	physics.	Einstein	formulated	this	in	1905:	“The	laws	of	physics	are	invariant	under	Lorentz	transformations	(when	going	from	one	inertial	system	to	another	arbitrarily	chosen	inertial	system)”.	Adopting	this	general	principle,	he	explored	the	ramifications	for	the	concepts	of	mass,
energy,	momentum,	and	force.	The	most	famous	result	is	Einstein’s	equation	for	energy:	E	=	mc².	This	involves	the	extension	of	the	Lorentz	transformation	to	mass.	Einstein	found	that	when	we	Lorentz	transform	a	stationary	particle	with	original	rest-mass	m0,	to	set	it	in	motion	with	a	velocity	V,	we	cannot	regard	it	as	maintaining	the	same	total
mass.	Instead,	its	mass	becomes	larger:	m	=	γm0,	with	γ	defined	as	above.	This	is	another	deep	contradiction	with	classical	physics.	Einstein	showed	that	this	requires	us	to	reformulate	our	concept	of	energy.	In	classical	physics,	kinetic	energy	is	given	by:	E	=	½	mv².	In	STR,	there	is	a	more	general	definition	of	energy,	as:	E	=	mc².	A	stationary
particle	then	has	a	basic	‘rest	mass	energy’	of	m0c².	When	it	is	set	in	motion,	its	energy	is	increased	purely	by	the	increase	in	mass,	and	this	is	kinetic	energy.	So	we	find	in	STR	that:	Kinetic	Energy	=	mc²-m0c²	=	(γ-1)m0c²	For	low	velocities,	with:	v
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